Computational physics

美 [ˌkɑːmpjuˈteɪʃənl ˈfɪzɪks]英 [ˌkɒmpjuˈteɪʃənl ˈfɪzɪks]
  • 网络计算物理学
Computational physicsComputational physics
  1. An Introduction to Computational Physics .

    计算物理学导论。

  2. The computational physics is an application science to solve complex physical problem , the finite difference method is important and basic in the computational physics .

    计算物理学是一门解决复杂物理问题的应用科学,有限差分方法是计算物理学中的一个重要的,基础的计算方法,掌握好这种计算方法对我们有实际的应用价值。

  3. Preliminary analysis of citation for Chinese Journal of Computational Physics

    《计算物理》学报引文的初步分析

  4. Applications of Monte Carlo method to the computational physics

    MonteCarlo方法在计算物理中的应用

  5. The Progress in the Subject of Computational Physics in the Inner Mongolia Autonomous Region

    内蒙古计算物理学科的进展

  6. Computational Physics , Chemistry , Biology and Medicine .

    计算物理,化学,生物学和医学。

  7. Computational physics as the third branch of Physics

    堪为物理学第三分支的计算物理

  8. The graphical output method in computational physics & an introduction of computer animation for science and Engineering

    计算物理图形输出方法&计算机科学与工程动画概述

  9. However the Monte Carlo ( MC ) method is a different one in the computational physics simulation .

    但是计算物理模拟中的MonteCarlo(MC)方法采用的是一种不同的做法。

  10. Computational physics of the optical constants of solids

    固体光学常数的计算物理

  11. Computational physics not only supplement theoretical and experimental physics , but provides new ways of thinking physics also through directly computer simulations .

    由于计算物理已经不仅仅只是作为理论物理和实验物理面临困难时的辅助工具,更重要的是,计机模拟为我们格物穷理提供了一种新的思维方式。

  12. FOREFRONT OF COMPUTATIONAL PHYSICS AND ITS INTERCROSS WITH COMPUTATIONAL TECHNOLOGY Intercross and syncretize in geophysical , medical and space imaging

    计算物理前沿及其与计算技术的交叉地震成像与空间成像、医学成像的交叉与融合

  13. The subject of computational physics started in 1983 and was awarded " key subject of Inner Mongolia " in 1994 in the Inner Mongolia Autonomous Region .

    内蒙古计算物理学科始建于1983年,1994年被评为内蒙古自治区重点学科。

  14. A computational physics method is described for calculating the mooro-optical constants of solids based on the micro-data obtained from computation of electronic structure in solids .

    本文延伸通常的固体电子结构计算,根据通常计算所得到的微观物理量以计算固体光学常数等宏观物理量。

  15. The first principles method , as it could effectively give the details at atomic level for materials , has been widely applied in computational physics and chemistry , materials and theoretical chemistry .

    第一性原理方法因其能方便的提供原子分子水平的信息,在计算物理/化学、材料学和理论化学方面已经被广泛应用。

  16. Mesoscopic physics laboratory , Department of physics , Peking university , beijing , 100871 ; laboratory of computational physics , Institute of Applied Physics and computational mathematics , beijing , 100088 .

    北京大学物理系介观物理实验室,北京,100871北京应用物理与计算数学研究所计算物理实验室,北京,100088。

  17. Previously , I taught theoretical and computational physics at the California Institute of Technology ( Caltech ), and in2008 I participated in the Y-Combinator entrepreneur program .

    之前我在加州理工学院教过理论物理和计算物理,2008年我参加了Y-Combinator企业家计划。

  18. It is also pointed out in this paper that computational physics is by its nature , methods and needs , so different from analytic theoretical physics and experimental physics as to constitute the third branch of physics .

    文中还指出计算物理在其性质、方法及需要等方面不同于和独立于解析的理论物理和实验物理,而成为物理学的第三分支。

  19. In the past thirty years , along with the demand of the spectroscopic data in astrophysics , the theoretical calculation in a strong magnetic field has been the subject of computational physics for the atomic and molecular system theory .

    近三十年来,随着天体物理学对光谱数据的需求,强磁场中原子和分子体系理论计算一直是计算物理中前沿课题。

  20. From the practice of teaching computational physics as a bilingual course to undergraduate students of Physics , I made some analysis on the classroom teaching in bilingual courses . Also experiences were presented and some suggestions were put forward in this paper .

    通过给物理系本科生上双语课程计算物理的实践,对双语课程的课堂教学进行了分析和思考,总结出一些有益的经验和看法。

  21. The study on numerical methods for partial differential equations is not only an important branch of computational mathematics , but also has extensive applications in many other fields , such as computational physics , chemistry , biology , et al .

    对微分方程数值解法的研究不仅是计算数学的重要内容,而且在其它学科领域也具有广泛应用,如计算物理、化学、生物等。